skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Oehler, D. Z."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Soare, R. J.; Conway, S. J.; Williams, J.-P.; Oehler, D. Z. (Ed.)
    The surface of Mars is universally thought to have experienced widespread cold and dry environmental conditions for at least the last half of its geologic history, with more modern studies suggesting relatively cold and dry conditions early in its geologic history as well. However, the paucity of liquid water and mean annual temperatures well below the freezing point of water do not necessarily mean a complete cessation of all water-related geologic activity at the Martian surface. Over the past several decades, investigations in the McMurdo Dry Valleys (MDV) of Antarctica have revealed a dynamic geological, environmental, and ecological system resulting from locally optimized conditions operating over repeated, albeit brief, intervals during summer months. In this chapter, we compare the hyper-arid and hypo-thermal environments of the MDV and the modern Martian surface and discuss three unique enigmas that demonstrate how the Antarctic is a valuable analog to better understand processes on Mars. 
    more » « less